Another Proof of Jackson's Theorem

Eli Passow
Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel

Received May 8, 1969

Lebesgue's proof of the Weierstrass approximation theorem is based on the approximation of the single function $|x|$. Newman [3] has pointed out that Jackson's theorem [1], on the order of approximation of continuous functions, can be derived by a suitable polynomial approximation to $|x|$. Such a proof has not appeared in the literature, and in this paper, we carry out the details of Newman's statement. For convenience, we prove the theorem on $[-1,1]$, but the proof carries over to an arbitrary interval.

Denote by P_{n} the space of polynomials of degree $\leqslant n$.
For $f \in C[-1,1]$, denote by $\omega_{f}(\delta)$ the modulus of continuity of f.
Theorem. Let $f \in C[-1,1]$. Then there exists a $p(x) \in P_{n}$ such that $|f(x)-p(x)| \leqslant c \omega_{f}(1 / n)$, for all $x \in[-1,1]$, where c is an absolute constant.

Proof. Divide $[-1,1]$ into $2 n$ subintervals, $[k / n,(k+1) / n],-n \leqslant k \leqslant n-1$. Let $L(k / n)=f(k / n)$ for all k, and let $L(x)$ be linear in each of the intervals $[k / n,(k+1) / n]$. Then $|L(x)-f(x)| \leqslant \omega_{f}(1 / n)$, for all $x \in[-1,1]$.

Let S_{k} be the slope of $L(x)$ in $[(k-1) / n, k / n]$, and let

$$
\begin{aligned}
& a_{k}=\left(S_{k+1}-S_{k}\right) / 2, \quad-n+1 \leqslant k \leqslant n-1 \\
& a_{n}=\left(-S_{n}-S_{-n+1}\right) / 2
\end{aligned}
$$

Then

$$
L(x)=A+\sum_{k=-n+1}^{n} a_{k}|x-k / n|=A+\int_{-1}^{1}|x-t| d g(t)
$$

where $g(t)$ is a step function having jumps at $x=k / n$ equal to $a_{k}, g(-1)=0$, A a constant.

Lemma 1. If $p(x)$ is a polynomial satisfying $p(0)=0$,

$$
\int_{-2}^{2}|d\{|x|-p(x)\}| \leqslant b / n
$$

then

$$
\left|f(x)-A-\int_{-1}^{1} p(x-t) d g(t)\right| \leqslant(2 b+1) \omega_{f}(1 / n)
$$

Proof.

$$
\begin{aligned}
\left|f(x)-A-\int_{-1}^{1} p(x-t) d g(t)\right| \leqslant & \left|f(x)-A-\int_{-1}^{1}\right| x-t|d g(t)| \\
& +\left|\int_{-1}^{1}\{|x-t|-p(x-t)\} d g(t)\right| \\
\leqslant & \omega_{f}(1 / n)+|\{|x-t|-p(x-t)\} g(t)|_{-1}^{1} \\
& -\int_{-1}^{1} g(t) d\{|x-t|-p(x-t)\} \mid \\
\leqslant & \omega_{f}(1 / n)+|g(1)| b / n+\max _{-1 \leqslant t \leqslant 1}|g(t)| b / n .
\end{aligned}
$$

Now,

$$
\max _{-1 \leqslant t \leqslant 1}|g(t)|=\max _{j}\left|\sum_{k=-n+1}^{j} a_{k}\right| \leqslant \max _{j}\left|S_{j}\right| \leqslant n \omega_{f}(1 / n) .
$$

Thus,

$$
\left|f(x)-A-\int_{-1}^{1} p(x-t) d g(t)\right| \leqslant(2 b+1) \omega_{f}(1 / n)
$$

Lemma 2. There exists a $p(x) \in P_{2 n}$, such that $p(0)=0$, and $\int_{-2}^{2}|d\{|x|-p(x)\}| \leqslant 2 \pi / n$.

Proof. $\quad \int_{-2}^{2}|d\{|x|-p(x)\}|=\int_{-2}^{2}\left|s(x)-p^{\prime}(x)\right| d x$, where

$$
s(x)=\left\{\begin{aligned}
-1, & -2 \leqslant x<0 \\
0, & x=0 \\
1, & 0<x \leqslant 2
\end{aligned}\right.
$$

Let $x_{k}=2 \cos [k \pi /(2 n+2)], k=1,2, \ldots, n$, and let $q(x)$ be the odd polynomial of degree $\leqslant 2 n-1$, satisfying $q\left(x_{k}\right)=1, k=1,2, \ldots, n$. Then $q(x)-1$ has simple zeros at the x_{k}, and no other zeros in [0, 2] (by Descartes' rule of signs); hence, $q(x)-1$ changes sign precisely at the x_{k}. Therefore, $q(x)-s(x)$ changes sign precisely at the points $y_{k}=2 \cos (k \pi /(2 n+2))$, $k=1,2, \ldots, 2 n+1$, and hence, [2], $q(x)$ is the polynomial of best L^{1} approximation to $s(x)$ of degree $\leqslant 2 n$, and the degree of approximation of $s(x)$ is given by

$$
\begin{equation*}
\left|\sum_{k=1}^{2 n+2}(-1)^{k+1} \int_{y_{k}}^{y_{k-1}} s(x) d x\right| \tag{*}
\end{equation*}
$$

where $y_{0}=2$, and $y_{2 n+2}=-2$. Explicitly,

$$
\begin{aligned}
\left(^{*}\right) & =\left|2 \sum_{k=1}^{n+1}(-1)^{k+1} \int_{y_{k}}^{y_{k-1}} d x\right|=4\left|1+2 \sum_{k=1}^{n}(-1)^{k} \cos (k \pi /(2 n+2))\right| \\
& =4 \tan (\pi /(4 n+4)) \leqslant 2 \pi / n
\end{aligned}
$$

Now choose $p(x)=\int_{0}^{x} q(t) d t$. Then $p(x)$ satisfies the conditions of Lemma 2, thus concluding the proof of the theorem.

References

1. D. Jackson, The theory of approximation, Amer. Math. Soc. Colloq. Publ., XI, 1930.
2. G. G. Lorentz, "Approximation of Functions," pp. 112-113, Holt, Rinehart, and Winston, 1966.
3. D. J. Newman, Rational approximation to $|x|$, Michigan Math. J. 11 (1964), 11-14.
