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Another Proof of Jackson's Theorem
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Lebesgue's proof of the Weierstrass approximation theorem is based
on the approximation of the single function 1x I. Newman [3] has pointed
out that Jackson's theorem [1], on the order of approximation of continuous
functions, can be derived by a suitable polynomial approximation to 1 x I.
Such a proof has not appeared in the literature, and in this paper, we carry
out the details of Newman's statement. For convenience, we prove the
theorem on [-1, 1], but the proof carries over to an arbitrary interval.

Denote by P", the space of polynomials of degree ~ n.
Forf E C[-1, 1], denote by Wf(S) the modulus of continuity off

THEOREM. Let fE C[-1, 1]. Then there exists a p(x) E P", such that
If(x) - p(x) 1 ~ cWf(l/n),for all x E [-1, 1], where c is an absolute constant.

Proof Divide [-1,1] into 2n subintervals, [kin, (k + l)ln], -n ~ k ~ n-1.
Let L(kln) = f(kln) for all k, and let L(x) be linear in each of the intervals
[kin, (k + l)ln]. Then I L(x) - f(x)1 ~ wf(lln), for all x E [-1, 1].

LetSk be the slope of L(x) in [(k - 1)ln, kin], and let

ak = (Sk+1 - Sk)/2, -n + 1 ~ k ~ n - 1,

a", = (-S", - S-n+1)/2.

Then

L(x) = A + t ak I x - kin I = A +r I x - t Idg(t),
k=-n+l -1

where g(t) is a step function having jumps at x = kin equal to ak , g(-1) = 0,
A a constant.

LEMMA 1. If p(x) is a polynomial satisfying p(O) = 0,

r I d{1 x I - p(x)}\ ~ bin,
-2
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then
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If(x) - A - f
l
p(x - t) dg(t) I~ (2b + 1) wf(ljn).
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Proof

If(x) - A - (Ip(x - t) dg(t) I ~ If(x) - A - (I I x - t Idg(t) I

+ I(I {I x - t I - p(x - t)} dg(t) I
~ wf(ljn) + I{I x - t I - p(x - t)} g(t)I:1

- (I g(t) d{j x - t I - p(x - t)} I
~ wf(ljn) + Ig(l)1 bjn + max Ig(t)1 bjn.

-1~t~1

Now,

max Ig(t)1 = m~x I ± ak I~ max ISj I ~ nWf(ljn).
-1~t~1 'k=-n+1 '

Thus,

If(x) - A - (I p(x - t) dg(t) I~ (2b + I) wf(ljn).

LEMMA 2. There exists a p(x) E P2n , such that p(O) = 0, and
f:2 I d{1 x I - p(x)}I ~ 2rrjn.

Proof f:2 I d{1 x I - p(xHI = f:2 I s(x) - p'(x)1 dx, where

!
-1

s(x) = 0:
I,

-2 ~ x < 0,
x = 0,

°< x ~ 2.

Let Xk = 2 cos[krrj(2n + 2)], k = 1,2,... , n, and let q(x) be the odd poly­
nomial of degree ~ 2n - I, satisfying q(Xk) = I, k = 1,2,... , n. Then
q(x) - I has simple zeros at the Xk ,and no other zeros in [0, 2] (by Descartes'
rule of signs); hence, q(x) - I changes sign precisely at the Xk . Therefore,
q(x) - s(x) changes sign precisely at the points Yk = 2 cos(krrj(2n + 2»,
k = I, 2, ... , 2n + 1, and hence, [2], q(x) is the polynomial of best
V approximation to s(x) of degree ~ 2n, and the degree of approximation
of s(x) is given by

1

2n
+

2 f1lk-l IL (-I)k+1 s(x) dx ,
k~1 11k

(*)
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where Yo = 2, and Y2n+2 = -2. Explicitly,

(*) = 1 2 :t: (_l)k+l f::-1

dx I = 41 1 + 2 ktl (-l)k cos(kTr/(2n + 2)) I

= 4 tan(7T/(4n + 4)) :(; 21T/n.

Now choose p(x) = J~ q(t) dt. Then p(x) satisfies the conditions of
Lemma 2, thus concluding the proof of the theorem.
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